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Abstract. This paper presents an intelligent method based on mul-
tiuobjective genetic algorithm (MOGA) for prediction of limit cycle in
multivariable nonlinear systems. First we address how such the systems
may be investigated using the Single Sinusoidal Input Describing Func-
tion (SIDF) philosophy. The extension of the SIDF to multi loop non-
linear systems is presented. For the class of separable nonlinear element
of any general form, the harmonic balance equations are derived. A nu-
merical search based on multiobjective genetic algorithm is addressed for
the direct solution of the harmonic balance system matrix equation. The
MOGA is employed to solve the multiobjective formulation and obtain
the quantitative values for amplitude, frequency and phase difference of
possible limit cycle operation. The search space of MOGA is the space
of the possible limit cycle parameters, such as amplitudes, frequency and
phase difference between the interacting loops. Finally computer simu-
lation is performed to show how the analysis given in the paper is used
to predict the existence of the limit cycle of the multivariable nonlinear
systems.

1 Introduction

The frequency response method is a powerful tool for the analysis and design of
linear control systems. It is based on describing a linear system by a complex-
valued function instead of differential equation. However, frequency domain anal-
ysis can not be directly applied to nonlinear systems because frequency response
functions can not be defined for nonlinear systems. The Describing Function
(DF) method is an extended version of the frequency response method, which
can be used to approximately analyze and predict nonlinear behavior[3,2]. The
main use of describing function method is for the prediction of limit cycles (os-
cillations) in nonlinear systems [1]. A limit cycle is the phenomenon that can
be observed in systems composed of nonlinear elements. The phenomenon is
of fundamental importance in nonlinear systems and, as far as the design of a
nonlinear system is concerned, it should be considered along with the stability
analysis [6]. The applicability of DF to limit cycle analysis is due to the fact
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that the form of the signals in the limit-cycling system is usually approximately
sinusoidal. In fact, we assume that the linear part of the system has low-pass
properties, which can attenuate the harmonics of the nonlinear system.
In this paper the describing function method is extended to multi-loop systems
and the MOGA formulation is designed to numerically search for limit cycles.
The computer simulations are performed to show how the proposed method is
used to predict the existence of the limit cycle of the nonlinear multivariable
systems.
The configuration of this paper is as follow: Section 2 offers a brief summary of
the sinusoidal input describing function theory, because it will be used in the
sequel. In section 3 the definition of limit cycle as a characteristic of nonlinear
systems is presented. The extension of the philosophy of the harmonic balance
equation to multivariable nonlinear systems will discussed in section 4. Several
approaches have been formulated to analyze and predict the limit cycle oscilla-
tion in nonlinear systems, in section 5 a brief review of multiobjective genetic
algorithm that we will use for predicting of amplitude, frequency and phase of
limit cycle of nonlinear MIMO systems, is presented. Simulation results and some
concluding remarks is discussed in next sections.

2 Sinusoidal Input Describing Function

The Sinusoidal Input Describing Function (SIDF) approach generally can be used
to study periodic phenomena. It is applied for two primary purposes: limit cycle
analysis and characterizing the input/output behavior of a nonlinear plant in
the frequency domain. In short a SIDF describes the amplitude and phase of the
first harmonic of the periodic output signal of the nonlinear system with respect
to the sinusoidal input signal [4]. Due to the characteristics of a nonlinear sys-
tem, the SIDF will be dependent on both the amplitude and the frequency of
the input signal. The SIDF can easily be measured with a Dynamic Signal Ana-
lyzer, which generates a sinusoidal source signal with a presanctified amplitude
and frequency. The corresponding amplitude and phase of the output signal are
computed online, resulting in the SIDF for the specified input amplitude and fre-
quency. In order to develop the basic version of the describing function method,
the system has to satisfy the following conditions [5]:

1. There is only a single nonlinear component and the system can be rearranged
into the form shown in Figure 1.

2. The nonlinear component is time-invariant.
3. Corresponding to a sinusoidal input, only the fundamental component of the

output is considered.
4. The nonlinearity is odd.

If the input of the nonlinear system is a sine wave e(t) = A sin(ωt), then the
output is periodic and can be expressed as:

u(t) =
a0

2
+

∞∑

i=1

[an cos(nωt) + bn sin(nωt)] (1)
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),( etF

Fig. 1. Nonlinear System for Describing Function Analysis

where the coefficients ai’s and bi’s are generally functions of A and ω determined
by:

a0 =
1
π

∫ π

−π

u(θ)dθ

an =
1
π

∫ π

−π

u(θ) cos(nθ)dθ

bn =
1
π

∫ π

−π

u(θ) sin(nθ)dθ (2)

where θ = ωt. Because of our assumptions, a0 = 0, n = 1, and

u(t) = a1 cos(ωt) + b1 sin(ωt) = M(A, ω) sin(ωt + ϕ(A, ω)) (3)

where

M(A, ω) =
√

a2
1 + b2

1 and ϕ(A, ω) = arctan(
a1

b1
) (4)

From the above equations it can be seen that the fundamental component of the
output corresponding to a sinusoidal input is a sinusoid of the same frequency
and can be written as:

M(A, ω)ej(ωt+ϕ(A,ω)) = (b1 + ja1)ej(ωt) (5)

The describing function of the nonlinear element is defined as the complex ratio
of the fundamental component of the nonlinear element by the input sinusoid,
i.e.

N(A, ω) =
M(A, ω)ej(ωt+ϕ(A,ω))

A sin(ωt)
=

1
A

(b1 + ja1) (6)

By replacing the nonlinear element, F (e) ,in figure 1, with its describing function,
N(A, ω), the nonlinear element can be treated as if it where a linear element with
a frequency response function. As can be seen from equation (6), Generally, the
describing function depends on the frequency and amplitude of the input signal.

3 Limit Cycle Prediction for Nonlinear Systems

A limit cycle is a periodic signal, xLC(t + T ) = xLC(t) for all t and some T
(the period) such that perturbed solutions either approach xLC (a stable limit
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cycle) or diverge from it (an unstable one). An approach to limit cycle analysis
that has gained widespread acceptance is the frequency-domain / SIDF method.
In Figure 1 if we replace F (e) with N(A, ω) and assume that a self-sustained
oscillation of amplitude A and frequency ω exists in the system then for r = 0,
y �= 0, we have:

N(A, ω)G(jω) + 1 = 0 or N(A, ω)G(jω) = −1 (7)

This equation, called the harmonic balance equation [7]. If any limit cycles exist
in our system, and the four assumptions (mentioned in section 2) are satisfied,
then the amplitude and frequency of the limit cycles can be predicted by solving
the harmonic balance equation. If there are no solutions to the harmonic balance
equation then the system will have no limit cycles (under the above assumptions).
It is generally very difficult to solve this equation by analytical methods.

3.1 Limit Cycle Prediction for Nonlinear Multivariable Systems

Provided that certain limitation are placed on the form of the linear system ele-
ments, the extension of the philosophy of harmonic linearization to multi-variable
systems is conceptually straightforward and has been suggested by several au-
thors [1,2]. The equation governing limit cycle operation in the autonomous
multi-variable nonlinear feedback system of figure 1 can be expressed as:

det
(
Ñ(A, ω)G(jω) + I

)
= 0 (8)

Where Ñ(A, ω) is a matrix of single sinusoidal input describing functions corre-
sponding to the nonlinear elements of N(A, ω). Thus for no limit-cycle to exist
no eigenvalue of Ñ(A, ω)G(jω) can equal (−1, j0). Consider the 2 × 2 system
shown in Figure 2, the set of equation governing this model is given by equation
(9).

(1 + n11g11)A1 + (n12g12)A2e
jϕ = 0

(n21g21)A1 + (1 + n22g22)A2e
jϕ = 0 (9)

The solution of this equation is sought for specific values of A1, A2, ω and ϕ,
where A1 and A2 are amplitudes of limit cycles in loop 1 and 2 respectively, ω
is frequency of oscillation for both loops and ϕ is phase-shift between the loops.
In this case there are two equations with four unknown variables. Equation (9)
can be solved by searching the space of A1, A2, ω and ϕ. As we mentioned above,
solving the harmonic balance equation is not trivial; for higher order systems
the analytical solution is very complex.
In this paper the Multiobjective Genetic Algorithm (MOGA) is used to search
over the existence of any possible limit cycle operation in nonlinear systems and
subsequently over controller structures as well as over the controller parameters.



64 F. Rashidi and M. Rashidi
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-

Fig. 2. A two-inputs two-outputs nonlinear system

4 Multiobjective Evolutionary Algorithms

The Genetic Algorithms (GAs) are the stochastic global search method that
mimic the metaphor of natural biological evolution. These algorithms maintain
and manipulate a population of solutions and implement the principle of survival
of the fittest in their search to produce better and better approximations to a
solution. This provides an implicit as well as explicit parallelism that allows for
the exploitation of several promising areas of the solution space at the same time.
The implicit parallelism is due to the schema theory developed by Holland, while
the explicit parallelism arises from the manipulation of a population of points [8].
The implementation of GA involves some preparatory stages. Having decoded
the chromosome representation into the decision variable domain, it is possible
to assess the performance, or fitness, of individual members of a population.
This is done through an objective function that characterizes an individual’s
performance in the problem domain. During the reproduction phase, each indi-
vidual is assigned a fitness value derived from its raw performance measure given
by objective function. Once the individuals have been assigned a fitness value,
they can be chosen from population, with a probability according to their rela-
tive fitness, and recombined to produce the next generation. Genetic operators
manipulate the genes. The recombination operator is used to exchange genetic
information between pairs of individuals. The crossover operation is applied with
a probability px when the pairs are chosen for breeding. Mutation causes the in-
dividual genetic representation to be changed according to some probabilistic
rule. Mutation is generally considered to be a background operator that ensures
that the probability of searching a particular subspace of the problem space is
never zero. This has the effect of tending to inhibit the possibility of converging
to a local optimum.
Multiobjective Evolutionary Algorithms (MOEA) are based on multi-objective
Genetic Algorithms (MOGA). The MOEA begins with a population of possible
solutions, called strings. Each string is fed into a model as the candidate solution,
in this case these strings are the parameters of the configured controller model.
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This model is usually a computer program representation of the solution to the
problem. Multi-objective simply means that there is more than one objective
involved [9]. For each string, each objective represents a separate cost. The man-
ner in which a string is deemed superior or inferior to other strings is carried out
by a selection mechanism. The selected strings undergo the evolutionary process
where the traits of the selected strings (which may or may not be good) are se-
lected and combined to form new strings for the next generation. In theory, with
each generation, the strings in the population should return better and better
cost functions by obtaining strings nearer to the optimal solutions. In practice,
often there are limits to the values of cost functions that can be achieved. This
depends on the objective functions and the constraints imposed on the model
parameters.

5 Simulation Results

The following simulation results illustrate the capabilities of proposed MOGA
for limit cycle prediction. In these simulations we choose two 2 × 2 nonlinear
systems. In both systems the numerical solution of equation (9) is formulated
as two objective problems. One is absolute value of the first equation and the
second objective is simply the absolute of the second equation in (9), as shown
in equation (10). The MOGA searches in the space of A1, A2, ω and ϕ to find
a set of such parameters that minimize both objectives. Due to the inherent
approximation in using SIDF and also the nature of multi-objective formulation,
it may not be possible to reach the exact minimum ,which is zero, as required by
the equation set (10). Therefore MOGA may converge to a set of Parteo Optimal
solution, so in the two nonlinear systems four of the best obtained results were
selected as the final results.

Objectiv1 = |(1 + n11g11)A1 + (n12g12A2)ejϕ|
Objectiv2 = |(n21g21)A1 + (1 + n22g22)A2e

jϕ| (10)

5.1 Simulation Results for the First System

The block diagram of the first system has shown in figure 3. As can be seen, this
diagram has two linear and nonlinear parts. The elements of the nonlinear part
are similar and consist of four ideal relays but the elements of the linear part
consists of four linear transfer functions. Parameters setting of MOGA for this
system has given in Table 1. The obtained results for prediction of limit cycle

Table 1. MOGA parameters for the first nonlinear system

No. of generation Population size Mutation Crossover
74 36 0.01 0.94
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Fig. 3. The block diagram of the first system

of this system has presented in Table 2. With inspection of table 2, we can see
that the obtained results of proposed approach is too close to analytical method,
which describes the salification of our method.

5.2 Simulation Results for the Second System

The block diagram of the second nonlinear system has shown in figure 4. As
can be seen, its configuration is similar to the first system, but the nonlinear
matrix ,in additional of ideal relay, consists of different nonlinear behavior such
as saturation and dead zone. The parameters setting of MOGA for this system

+
+

+

+
+

+

-

-

4.036.0

67.0
23

2

++ ss

s

84.012.3

43.2
2 ++ ss

14.2

49.3

+

-

s

54.236.2

27.0
23 ++

-

ss

Fig. 4. The block diagram of the second system

are those parameters given in table 1. The obtained results for prediction of
limit cycle of this system has presented in Table 3. With inspection of table
3, we can see that the obtained results of proposed approach is too close to
analytical method. All programs of the MOGA method have been written in
MATLAB/SIMULINK software and c++ language. These programs have been
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Table 2. Obtained results of limit cycle prediction with MOGA for the first system

Best obtained results ω A1 A2 ϕ Objective1 Objective2

1 0.37654 1.45627 0.86423 2.35647 0.01162 0.02317
2 0.37622 1.45638 0.86475 2.35609 0.01768 0.02406
3 0.37697 1.45704 0.86429 2.35698 0.01967 0.02385
4 0.37604 1.45677 0.86448 2.35637 0.01145 0.01249

Analytical method 0.37596 1.45668 0.86437 2.35643 – –

Table 3. Obtained results of limit cycle prediction with MOGA for the second system

Best obtained results ω A1 A2 ϕ Objective1 Objective2

1 0.64725 0.87654 1.28343 3.48752 0.01422 0.01963
2 0.64711 0.87637 1.28387 3.48727 0.01271 0.01537
3 0.64787 0.87672 1.28376 3.48794 0.03624 0.02415
4 0.64762 0.87616 1.28307 3.48765 0.03245 0.02714

Analytical method 0.64716 0.87652 1.28367 3.48713 – –

executed on a Pentium IV personal computer. On this computer, the response
time of the proposed method for all testing cases, was less than 83 second, which
makes feasible the application of the proposed approach for limit cycle prediction
in reasonable and acceptable computation time.

6 Conclusion

In this paper an intelligent method of predicting limit cycle amplitude, frequency,
and phase for nonlinear multivariable systems was presented. this method was
based on multiobjective genetic algorithm, which was capable of predicting spec-
ified modes of theoretical limit cycle operation. An advantage of this method ,as
we showed, was that MOGA can be directed to search for all possible solutions
including sub-harmonic components that are ignored in the derivation of the
SIDF. Furthermore the proposed method was capable of quantifying the magni-
tude, frequency and the phase of the limit cycles as well as the loop interaction
effects in the frequency domain which proves useful in any subsequent controller
design. The effectiveness of the proposed method was demonstrated trough ex-
amples. Obtained results showed that MOGA can be used for predicting of limit
cycle in MIMO systems with high nonlinearity in a reasonable and acceptable
computation time.
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